(1) \(x^2-6x+9=0\)
(2) \(x^2+5x+3=0\)
(3) \(x^2-5x+4=0\)
(4) \(2x^2-6x+1=0\)
(5) \(4x^2-2x-1=0\)
(6) \(-2x^2-x-1=0\)
(7) \(5x^2-x-1=0\)
(1) \(x^2-6x+9=0\)
(2) \(x^2+5x+3=0\)
(3) \(x^2-5x+4=0\)
(4) \(2x^2-6x+1=0\)
(5) \(4x^2-2x-1=0\)
(6) \(-2x^2-x-1=0\)
(7) \(5x^2-x-1=0\)
求証﹕\(\log_2(2^x+2^y)\geq\frac{x+y}{2}+1\).
証明﹕由AM-GM不等式得\(2^x+2^y\geq 2\sqrt{2^x\cdot 2^y}=2\sqrt{2^{x+y}}\)
\(\because y=\log_2x\)是增函數
\(\therefore \log_2(2^x+2^y)\geq \log_2{2\sqrt{2^{x+y}}}=\log_2 2+\log_2 2^{\frac{x+y}{2}}=1+\frac{x+y}{2}\)
証畢