設 \(a,b,c\in\mathbb{R}^+\),\(a+b+c=1\),求\((1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\)的最小值。
解﹕\(\because 1+\frac{1}{a}\geq 2\sqrt{1\cdot\frac{1}{a}}=\frac{2}{\sqrt{a}}\) (當且僅當\(a=1\)時等號成立)
同理可証\(1+\frac{1}{b}\geq\frac{2}{\sqrt{b}}\) (當且僅當\(b=1\)時等號成立)
同理可証\(1+\frac{1}{c}\geq\frac{2}{\sqrt{c}}\) (當且僅當\(c=1\)時等號成立)
\(\therefore (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\geq\frac{2}{\sqrt{a}}\cdot\frac{2}{\sqrt{b}}\cdot\frac{2}{\sqrt{c}}=\frac{8}{\sqrt{abc}}\)
另一方面\(abc\leq (\frac{a+b+c}{3})^3=\frac{1}{27}\) (當且僅當\(a=b=c=\frac{1}{3}\)時等號成立)
\(\therefore \frac{8}{\sqrt{abc}}\geq\frac{8}{\sqrt{\frac{1}{27}}}=24\sqrt{3}\)
此方法的\(a,b,c\)的取值不一致,故此方法無效。
設 \(a,b,c\in\mathbb{R}^+\),\(a+b+c=1\),求\((1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\)的最小值。
解﹕\(\because 1+\frac{1}{a}=1+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\geq 4\sqrt[4]{1\cdot\frac{1}{3a}\cdot\frac{1}{3a}\cdot\frac{1}{3a}}=\frac{4}{\sqrt[4]{27a}}\) (當且僅當\(a=\frac{1}{3}\)時等號成立)
同理可証\(1+\frac{1}{b}\geq\frac{4}{\sqrt[4]{27b}}\) (當且僅當\(b=\frac{1}{3}\)時等號成立)
同理可証\(1+\frac{1}{c}\geq\frac{4}{\sqrt[4]{27c}}\) (當且僅當\(c=\frac{1}{3}\)時等號成立)
\(\therefore (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\geq\frac{64}{\sqrt[4]{27^3(abc)^3}}\)
另一方面\(abc\leq (\frac{a+b+c}{3})^3=\frac{1}{27}\) (當且僅當\(a=b=c=\frac{1}{3}\)時等號成立)
\(\therefore \sqrt[4]{27^3(abc)^3}=1\)
\(\therefore (1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\geq 64\)
所以當\(a=b=c=\frac{1}{3}\)時,\((1+\frac{1}{a})(1+\frac{1}{b})(1+\frac{1}{c})\)的最小值是64.